

NASA Acquisition Pollution Prevention (AP2) Program and Projects

2006 International Workshop on Pollution Prevention and Sustainable Development

November 1-2, 2006

Colorado Springs, CO

Matthew J. Rothgeb
Senior Engineer
NASA Acquisition Pollution Prevention Program
E-Mail: Matthew.J.Rothgeb@nasa.gov

NASA AP2 Program Topics

Non-Chrome Projects / Status Current Non-Chrome Coatings

AP2 Program Background

- In enacting its mission, the NASA AP2 Program operates in three business entities:
 - Agency
 - Key Partners: Shuttle Environmental Assurance Group (SEA)
 - U.S. Department of Defense (DoD)
 - Key Partners: Joint Group on Pollution Prevention (JG-PP), Air Force Space Command, AFRL, AFMC
 - International
 - Key Partners: Portuguese Center for Pollution Prevention (C3P)
 - European Space Agency (ESA)

All Current and Developing Projects

AP2 Project Work Breakdown Structure Plan for FY07

10/15/06

Joint P2 Projects Work Breakdown Structure

Coatings Projects

Current and Developing Non-Chrome Projects

Non-Chrome Coating System for Aerospace Phase 1 and 2 (NASA-AF)

Description:

 Evaluation and testing of non-chromated coating systems as replacements for hexavalent chrome coatings in aircraft and aerospace applications.

Stakeholders:

- NASA (KSC, MSFC, Boeing, RSRM, ATK Thiokol, Hill AFB, United Space Alliance, SSME, SEA)
- Air Force (Hill AFB, WPAFB AFRL & MLBT).

Benefits:

- Meeting EPA and OSHA requirements
- Reduced maintenance cost and government liability
- Addresses NASA and Air Force requirements on AL alloys 2219, 2195, 6061, 2024 Bare, 2024 Clad, and 7075.

FY 05 - 06 Achievements:

- Defined scope of work
- Outlined phase 1 testing requirements
- Identified project stakeholders and their respective roles and responsibilities
- Procured all materials and coated panels
- Sent panels that were finished to respective test sites so testing could begin.

Future Plans:

- Complete Preparation of Test Panels (Nov. 2006)
- Finish the laboratory testing:
 - 1. Salt Spray
 - 2. Filiform
 - 3. Cyclic corrosion cabinet test
 - 4. Dissimilar Metals Corrosion
 - 5. Hydrogen Embrittlement
 - 6. Adhesion.

Non-Chrome Coating System for Aerospace Phase 1 and 2 (NASA-AF)

System	Coatings				
	Alodine 5700				
<u>_</u>	Sicopoxy 577-630				
T	Deft 03-GY-321				
	36173(gray)/17925(gloss white)				
Ν	Prekote				
	Mg-rich primer				
	Deft 03-GY-321, 36173(gray)				
	Kimetsan SPS (Degreaser)				
S	Prekote				
	AquaSurTec Crosslinker (Primer) AquaSurTech D45-AMS-MO				

System	Coatings				
	Alodine 5700				
	Hentzen Primer 05510WEP-X				
Н	Deft 03-GY-321, 36173(gray)				
С	Alodine 1200s				
	Deft 02-Y-40				
	Deft 99-GY-001, 36173(gray)				
	Boegel AC-131CB				
*B	Dupont Corlar 13570S				
	Deft 03-GY-321, 36173(gray)				

Non-Chrome Coating System for Aerospace Phase 1 and 2 (NASA-AF)

Test	Standard	Pass/Fail criteria	Stakeholder interest	Responsibility
Salt Spray	ASTM B117 Neutral Salt Fog on Scribed, Painted Substrate	 Class C: 3,000 hours with no evidence of corrosion (minor surface corrosion in scribe permissible). Dry scrape adhesion after exposure to corrosive environment 	Hill AFB F16, KSC CT	Hill AFB KSC Corrosion
Filiform	ASTM D 2803 Filiform Corrosion Resistance	All filaments < 1/4"; Majority < 1/8".	Hill AFB F16, KSC CT, MSFC M&P	KSC Corrosion MSFC M&P
Cyclic corrosion cabinet test	ASTM D 5894 Cyclic Corrosion Test on Scribed, Painted Substrates	 Class C: Equivalent or improved performance compared to controls. Dry scrape adhesion after exposure to corrosive environment. 	MSFC M&P	MSFC M&P
Dissimilar Metals Corrosion	ASTM B117	Drill and rivet the panels together w MS20470 B5-5 on one inch centers spray cabinet per ASTM B 117Vi 500 hour increments to 2000 hours or loss of adhesion. After 2000 hour sandwiches and examine the panel or metal corrosion.	Boeing	
Hydrogen Embitterment		Salt Fog Testing on "Simulated Aircraft Structures"	Hill AFB F16, KSC, MSFC M&P, Boeing, Orbiter, CEV	AFRL MLBT Hill AFB
Adhesion	ASTM B 571		Hill AFB F16, KSC, MSFC M&P, Boeing, Orbiter, CEV	KSC CT

Alternatives to High-VOC Chrome Coatings for Aircraft Exteriors (C3P)

Description:

- Demonstrate low-VOC and non-chrome coating systems on Portuguese commercial aircraft
- The identification/qualification of hex-chrome free coating systems is a Portuguese priority due to national & European safety and environmental regulations.

Stakeholders:

 TAP Air Portugal, OGMA (Indústria Aeronáutica de Portugal), C3P and NASA AP2.

Benefits:

- Qualification of a non-chrome paint system for application to aluminum in aerospace applications
- Decreased costs associated with environmental and occupational health/safety regulations.

FY 05-06 Accomplishments:

- Painted exterior service door of a TAP Airbus A319 and dip-applied non-chrome pretreatment on several panels (Oct 2004)
- Two visual inspections (Jan. and Apr. 2005) appeared favorable with no visual signs of deterioration in thickness or color (Visual inspections continue)
- Direct and in-kind funding covers all laboratory and field testing.
- Laboratory Testing Completed in September 2006
- Results (M1-M3 Coatings failed heat stability testing remainder of tests and coatings passed) – NASA Tests Only

Future Plans:

- Continue monitoring of coating performance on service door
- Complete laboratory testing (ISQ).

Alternatives to High-VOC Chrome Coatings for Aircraft Exteriors (C3P)

- Six sets of panels for testing:
 - 6 System 1 (M) (3 Original, 3 Restored)
 - 6 System 2 (P) (3 Original, 3 Restored)

TAP-OGMA	TAP-OGMA				
System 1 (M)	System 2 (P)				
Akzo Nobel M790E		Pantheon Prekote			
Aviox Cr-free (CF) Primer		Aviox Cr-free (CF) Primer			
Aviox Finish 77702		Aviox Finish 77702			

Alternatives to High-VOC Chrome Coatings for Aircraft Exteriors – Lab Test Requirements

	Test	Test Method	Test Site
1	Gloss	ISO 2813	NASA – ALL PASSED
2	Initial Color	ISO 7724 5.3	NASA – ALL PASSED
3	Adhesion – Cross Hatch	ISO 2409	ISQ
4	Impact (reverse)	ISO 6272	ISQ
5	Flexibility – Conical Mandrel	ISO 6860	ISQ
6	Flexibility – Cylindrical Mandrel	ISO 1519	NASA – ALL PASSED
7	Water a) Blistering b) Grade c) Penetration	ISO 4628.5 ISO 2409 ISO 1518	a) ISQ b) ISQ c) ISQ
8	Fluid Resistance – Hydraulic fluid Skydrol LD4, Hyjet IV-A or equivalent	ISO 1518	ISQ
9	Corrosion Resistance - Filliform	EN 3665 1000 hrs	ISQ
10	Corrosion Resistance – Salt Spray	ISO 7253 3000 hrs	NASA
11	Artificial weathering	ISO 2813, ISO 7724	ISQ
12	Washability (cleaning efficiency)	ISO 2813	ISQ
13	Strippability	AMS 3095 5.4	ISQ
14	Restoration	AMS 3095 5.5	ISQ
15	Heat Stability	ISO 1519, ISO 3270	NASA – M1, M2, M3 – Failed - Remainder of Coatings Passed

Non-Chrome Coatings in Use

Non-Chrome Coatings In-Use

	Comparison of Coating Systems Utilizing Non-Chrome											
	Air Force a								TAP-OGMA		TAP-OGMA	
	(F-15 only)		AETC b		SRB		Orbiter		System 1		System 2	
Pretreat ment	Henkel Alodine 1200/1600	C r	Pantheon Prekote		Henkel Alodine 5200/5700		Alodine 1200	C r	Akzo Nobel M790E		Pantheon Prekote	
Primer	Deft 02GN084 Non-Cr Primer		MIL-PRF- 81733 epoxy primer	C r	Hentzen Epoxzen Primer		Akzo-Nobel/ Dexter 10PW22-2		Aviox Cr-free (CF) Primer		Aviox Cr-free (CF) Primer	
Topcoat	Deft ELT (Extended Life Topcoat)		MIL-PRF- 85285 polyurethane topcoat		Hentzen White Gloss Zenthane (R) Plus				Aviox Finish 77702		Aviox Finish 77702	

NASA Non-Chrome Coatings for Flight Applications

Non-Cr Pretreatment (ET)	Non-Cr Primers Only (ET)	Non-Cr Pretreatments (Orbiter)			
MACDERMID Iridite 14-2 (CR Pretreat-Control)	idite 14-2 Cr		Cr	Henkel Alodine 1200 (Pretreat-Control)	O r
Metalast TCP-HF		Randolph Products TT-P-645A Zinc Chromate (Primer-Control)	Cr	Henkel Alodine 5900 Note: focus of studies due to better test results	
Henkel Alodine 5700		PRC Desoto Bonding Primer (Primer-Control)		Metalast TCP-HF	
El Dorado Dorado Kote #7		GE Shared Vision Epoxy Primer			
Pantheon PreKote		GE Shared Vision Polysiloxane Primer			
Carl Chemical ECO Treat		Hentzen Primers- multiple formulations			
		Insignia's Mega Flight Mega Guard HSC Epoxy			

Other Non-Chrome Projects

Non-Chrome Coating System for Electronics Housings

Description:

 Evaluation and testing of non-chromated coating systems as replacements for hexavalent chrome coatings used on electronics housings

Stakeholders:

- NASA KSC, JPL, MSFC, JSC, GSFC, ARC, USA-SRB, Boeing-Orbiter
- Air Force, Army, Navy, Marines, Dept. of Energy
- More than 25 manufacturers and vendors.

Benefits:

- Meeting EPA and OSHA requirements
- Meeting European RoHS requirements
- Reduced hazardous materials associated with electronics equipment

Achievements:

- Identified potential project stakeholders and their requirements
- Project requirements survey and materials identification form sent out

Future Plans:

- Continue to communicate with potential project stakeholders
- Continue to develop interest in the project

